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Abstract

Accurate spatial localization requires a mechanism that corrects for errors, which might arise from inaccurate sensory
information or neuronal noise. In this paper, we propose that Hippocampal place cells might implement such an error
correction mechanism by integrating different sources of information in an approximately Bayes-optimal fashion. We
compare the predictions of our model with physiological data from rats. Our results suggest that useful predictions
regarding the firing fields of place cells can be made based on a single underlying principle, Bayesian cue integration, and
that such predictions are possible using a remarkably small number of model parameters.
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Introduction

For successful navigation, an organism needs to be able to

localize itself (i.e. determine its position and orientation) as well as

its goal, and it needs to be able to calculate a route between these

locations. Since the first reports of physiological evidence for

hippocampal ‘place cells’ [1] which exhibit increased firing only in

specific locations in the environment, there have been a large

number of empirical findings supporting the idea that the

Hippocampal-Entorhinal Complex (HEC) is a major neuronal

correlate underlying spatial localization and mapping [2].

To keep track of their location when they move, mammals must

integrate self-motion signals, and use them to update their location

estimate, using a process commonly referred to as path integration

or dead reckoning. It has been suggested that self-motion

information might be the primary constituent in the formation

of the firing fields of place cells [3,4]. However, path integration

alone is prone to accumulating errors (arising from the inaccuracy

of sensory inputs and neuronal noise), which add up over time

until the location estimate becomes too inaccurate to allow for

efficient navigation [5,6]. Because path integration errors are

cumulative, path integrators have to be corrected using allothetic

sensory information from the environment in order to ensure that

the estimated location will stay close to the true location.

It has also been suggested that place cells rely heavily on visual

information [1,2,7]. However, the question of how exactly

different sources of information are combined, from different

boundaries or landmarks, has received little attention in the

literature. This paper investigates how place cells in the

Hippocampus might integrate information to provide an accurate

location estimate. We propose that the integration of cues from

different sources might occur in an approximately Bayesian

fashion; i.e. that the information is weighted according to its

accuracy when combined with a final estimate, with more precise

information receiving a higher importance weight. We provide

supporting evidence and theoretical arguments for this claim in the

Results section. We will compare neuronal recordings of place cells

with predictions of a Bayesian model, and present a possible

explanation for how approximate Bayesian inference, although

insufficient to fully explain firing fields, might provide a useful

framework within which to understand cue integration. Finally, we

will present a possible model of how Bayesian inference might be

implemented at the neuronal level in the hippocampus.

Our results are consistent with the ‘Bayesian brain hypothesis’

[8]; the idea that the brain integrates information in a statistically

optimal fashion. There is increasing behavioural evidence for

Bayesian informational integration for different modalities, e.g. for

visual and haptic [9], for force [10], but also for spatial

information, e.g. [11] (see Discussion). Other models of statistically

optimal or near-optimal spatial cue integration have been

proposed previously [11–14], although mostly at Marr’s compu-

tational or algorithmic level, rather than at a physical level. The

latter, mechanistic Bayesian view, has been cautioned against due

to lacking evidence on the single neuron level [15]. Our results

partially account for three disparate single-cell electrophysiological

data sets using a Bayesian framework, and suggest that although

such models might be too simple to fully explain patterns of

neuronal firing, they will still be highly valuable to our

understanding of the relationship between neuronal activity and

the environment.
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Neuronal correlates of localization
Here we briefly summarize the neuroscientific literature

concerning how mammalian brains represent space. Most of

these results come from animal (rat, and to a lesser extent, monkey)

cellular recording studies, although there is some recent evidence

substantiating the existence of these cell types in humans.

Four types of cells play an important role for allocentric spatial

representations in mammalian brains:

1. Grid cells in the medial entorhinal cortex show increased

firing at multiple locations, regularly positioned in a grid across

the environment consisting of equilateral triangles [16]. Grids

from neighbouring cells share the same orientation, but have

different and randomly distributed offsets, meaning that a small

number of them can cover an entire environment. It has also

been suggested that grid cells play a major role in path

integration, their activation being updated depending on the

animal’s movement speed and direction [2,16–18]. There is

evidence to suggest that they exist not only in mammals, but

also in the human entorhinal cortex (EC) [19].

2. Head-direction cells fire whenever the animal’s head is

pointing in a certain direction. The primary circuit responsible

for head direction signals projects from the dorsal tegmental

nucleus to the lateral mammillary nucleus, anterior thalamus

and postsubiculum, terminating in the entorhinal cortex [20].

There is evidence that head direction cells exist in the human

brain within the medial parietal cortex [21].

3. Border cells and boundary vector cells (BVCs), which are

cells with boundary related firing properties. The former

[22,23] seem to fire in proximity to environment boundaries,

while the firing of the latter [2,24] depends on boundary

proximity as well as direction relative to the mammal’s head.

Cells with these properties have been found in the mammalian

subiculum and entorhinal cortex [22,23], and there is also

some behavioural evidence substantiating their existence in

humans [24].

4. Place cells are pyramidal cells in the hippocampus which

exhibit strongly increased firing in specific spatial locations,

largely independent from orientation in open environments

[2,25], thus providing a representation of an animal’s (or

human’s [26]) location in the environment. A possible

explanation for the formation of place fields (the areas of the

environment in which place cells show increased firing) is that

they emerge from a combination of grid cell inputs on different

scales [3,4]. It has also been proposed that place fields might be

mainly driven by environmental geometry, arising from a sum

of boundary vector cell inputs [7,24]. This model has

successfully accounted for a number of empirical observations,

e.g. the effects of environment deformations [7], or of inserting

a barrier into an environment, on place fields [24].

Hippocampal place cells play a prominent role in navigation,

the association of episodic memories with places, and other

important spatio-cognitive functions, which might be impaired if

their place fields were inaccurate. However, neither of the outlined

place field models fully explain how place cells combine different

inputs for accurate localization. The grid cell input model is

subject to corruption of the location estimate by accumulating

errors which would eventually render the estimate useless unless

corrected by observations (see Introduction). On the other hand,

boundary vectors alone (if driven solely by geometry, not by

features) do not always yield unambiguous location estimates [14].

Even given complex visual information (which border-related cells

do not seem to respond to [22], and of which a rat might not see

much, given its poor visual acuity [27]), localization without path

integration is difficult (localization without odometry was solved in

robotics only recently, and is still much more error-prone than

combining observations with odometry [28]). For many place cells,

both the path integration inputs from grid cells and observation

inputs from border-related cells (and possibly others) seem to be

required in order to ensure accuracy and certainty. This has been

pointed out before (e.g. [29]), but the question of how exactly these

inputs are combined has received little attention (but see the

Discussion section for related work).

A further, as of yet unanswered, question is how exactly

information from different sources (boundaries, landmarks,

different senses etc.) might be combined. Although the BVC

model made detailed predictions as to the kinds of inputs received

by place cells, was fitted successfully to electrophysiological data,

and matched empirical observations (such as what happens with

place fields on barrier insertion), it does not propose a general

principle of cue integration. In order for the model to accurately

reflect place field location and size in a given environment, a

number of weight and tuning parameters have to be adjusted for

every single place cell [7,24]. In contrast, the Bayesian hypothesis

that we investigate in this work implies a general underlying

principle for how inputs into place cells are weighted; according to

their precision and with more accurate inputs influencing the

result stronger than less accurate inputs. The biggest advantage of

such a general principle is that it significantly reduces the number

of parameters required to account for large datasets (see Results).

Please note that we adopt a highly simplified and constrained

view of HEC function and anatomy in this paper. Hippocampal

cells play a role in many cognitive functions other than spatial

localization; among others long-term episodic/declarative memo-

ry [30,31], memory based prediction [32], and possibly short-term

memory [33] and perception [34]. Furthermore, place cells receive

a broader array of inputs than just those transmitting visual and

path integration information, such as odours and tactile informa-

tion [35]. Finally, while cells from different parts of the

hippocampus differ in their connectivity and in the information

they receive, we believe that dealing with a small subset of

functionality and anatomy suffices for investigating the existence of

statistically near-optimal information integration in place cells.

Hypotheses
In this paper, we describe a Bayesian mechanism of information

integration in place cells accounting for place field formation. This

mechanism rests on the following hypotheses:

H1. Some Hippocampal place cells perform approximate

Bayesian cue integration - they combine different sources of

information in an approximately Bayes-optimal fashion, weighting

inputs according to their precision. This means that when sensory

inputs change, some place fields should shift and resize in a

manner predictable by a Bayesian model.

H2. A Bayesian view requires that HEC neurons encode a

mammal’s uncertainty regarding its position, in addition to its

actual location. We hypothesize that the sizes of place cell firing

fields are correlated with this location uncertainty.

H3. The uncertainty of distance measurements to borders sb

depends on the boundary distance db, and can be approximated

by a linear relationship using some constant s (cf. Weber’s law):

sb~s:db. There is some physiological evidence for this in border-

related cells [22,23], as well as some behavioural evidence that

Weber’s law holds for spatial distance perception in rats [36] and

mammals [37]. That the tuning breadths of BVCs should increase

with distance is also a prerequisite of the Boundary Vector Cell

Bayesian Cue Integration in Place Cells
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model [7,24], has been successfully fit to neuronal and behavioural

data, and is supported by physiological evidence [22].

These hypotheses are interdependent, and will be investigated

together. To generate verifiable predictions from the Bayesian

hypothesis (H1) we need to assume how uncertainty is represented

(H2) and how it can be derived from the geometry of the

environment (H3). Together, these hypotheses allow the making of

predictions about the sizes of place cell firing fields, given the

distances of all boundaries, in some cases using just a single

parameter specifying how uncertainty depends on distance. The

Bayesian mechanism attempts to account for the sizes of single

firing fields, deriving them from the distances of boundaries or

obstacles (H3) - thus, place cells with multiple firing fields can be

modelled by dealing with each firing field separately, even under

Gaussian assumptions. In the Discussion section, we briefly

describe how the model could be extended by relaxing some of

its assumptions, and we report applications of the extended model

in the Results section. We do not claim that place cells implement

any statistical equation (especially not the simplistic ones described

here), but we propose that investigating their firing fields within a

statistical framework can yield useful insights about the way they

combine information.

Methods

The hypothesis of approximate Bayesian integration of infor-

mation in place cells (H1) yields verifiable electrophysiological

predictions. Since we hypothesized that place cells can perform

approximate Bayesian cue integration (H1), and place field sizes

are correlated with uncertainty (H2), and that uncertainty depends

on distance (H3), expected place field sizes can be predicted from

the geometry of an environment using a Bayesian model. This

section will outline such a Bayesian model.

Model assumptions
To simplify the mathematics, and because this assumption fits

our data well, we will assume elliptical firing fields shaped like two-

dimensional Gaussians. We do not claim that place cells encode

exact Gaussian distributions (there are also asymmetric place fields

in the hippocampus - see the Discussion for potential extensions of

this simple model). However, investigating their firing fields in a

Bayesian framework can yield useful insights about cue integra-

tion. The predictions in the Results section are generated from

Bayesian models using Gaussian probability distributions to

represent locations, in simplified two-dimensional environments,

with sizes and distances adjusted to those of the respective in-vivo

experiments.

Bayesian spatial cue integration
Bayesian inference under Gaussian assumptions implies that

information from different observations should be weighted

according to its accuracy. This claim can be formalized using

Bayes’ rule, according to which the probability distribution of the

location given a number of observations can be calculated from

p(xDO)!p(x)p(ODx) ð1Þ

where x is the animals location in the environment and

O~fo1, � � � ,oNg represents a set of N observations. p(xDO) is

the posterior location belief, given all observations. p(x) is a prior

belief over the location (for example via path integration), and

p(ODx) represents the probability of the current observations given

x (such as boundaries or landmarks), characterized by the distance

from x and their uncertainty (see below). Since observations can be

assumed to be conditionally independent given the location (this is

an assumption commonly made in robotics, see [38,39]), we can

expand equation (1) to

p(xDO)!p(x) P
N

i~1
p(oi Dx): ð2Þ

In this simplified model, the probability distributions are

assumed to be Gaussian. Thus, for multiple spatial dimensions,

equation (2) can be written as

N (m̂m,ŜS)~ªN (mp,Sp) P
N

i~1
N (mo,i,So,i): ð3Þ

In the case of a single spatial dimension, and in environments

where spatial dimensions can be assumed to be independent and

thus can be considered separately, equation (2) can be written as

N (m̂mx,ŝsx)~ªN (mp,sp) P
N

i~1
N (mo,i,so,i): ð4Þ

Here, m̂m (or m̂mx in one dimension) is the mean of the posterior or

the ‘best guess’ location, ŜS (or ŝsx in one dimension) the

uncertainty (covariance, or standard deviation) associated with

this location, mp (or mp) and Sp (or sp) are the mean and the

uncertainty of the prior belief location, mo,i (or mo,i) and So,i (or

so,i) are the means and uncertainties of the individual observa-

tions, and ª is a constant for normalization.

Calculating the uncertainty ŝsx (standard deviation) in one

spatial dimension is sometimes sufficient in environments in which

the width is negligible compared to the length (such as the first two

environments in the Results section: the linear track in Figure 1,

and the circular track in Figure 2). In the rectangular environ-

ments of Figure 3, the x and y dimensions were assumed to be

independent, and the uncertainties were calculated independently

- which is a reasonable approximation for this particular dataset,

since the observations (the walls of the environment) were

orthogonal. However, for more complex environments, the

covariances ŜS would have to be calculated from equation (3)

instead of individually calculating the standard deviations in each

dimension (see Text S1 in the Supporting Information for the

derivation of the covariance matrix from distance measurements,

for two-dimensional environments in which the dimensions cannot

be assumed to be independent).

In the one-dimensional case, solving equation (4) for the

standard deviations (see [40] for the derivation of the standard

deviation of a product of Gaussians), we can calculate the

uncertainty associated with the ‘best guess’ location, ŝsx, which for

a single observation is

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ps2
o

s2
pzs2

o

s
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( 1

s2
p

z
1

s2
o

)
{1

s
: ð5Þ
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For N observations, the uncertainty is:

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( 1

s2
p

z
XN

i~1

1

s2
o,i

)
{1

vuut
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( 1

s2
p

z
1

s2

XN

i~1

1

d2
i

)
{1

vuut
: ð6Þ

According to hypothesis 3 (see Hypotheses section), the

observation uncertainty is proportional to the distance di:

so,i~s:di. Thus, 1
s2

o,i

~ 1
s2

1
d2

i

. Substituting the precision or accuracy

of the prior belief 1
s2

p
by ap, and the factor 1

s2 influencing observation

precision (i.e. how rapidly the accuracy of distance judgements

decreases with increasing distance) by ao, we arrive at equation (7),

which can be used to calculate the resulting uncertainty given a

prior belief accuracy (which might depend on the path integrator)

and the distances and accuracies of all observations.

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(apzao

XN

i~1

1

d2
i

)
{1

vuut ð7Þ

Equation (7) was used in the Results section to predict

uncertainties (hypothesized to be correlated with place field sizes),

given distances to boundaries or landmarks. Explained proportions

of variance R2 were calculated from R2~1{SSerr=SStot, where

SSerr is the sum of squared differences between the model

prediction and the recorded data, and SStot is the total sum of

squares.

For the data analysed in the Results section, we assumed the

parameter ap to be negligible - ao was the sole parameter fitted to

the data. The single-unit place field data on the linear and circular

tracks (see first two subsections in Results) has been obtained from

electrodes in distal parts of area CA1 of the Hippocampus (closest

to the subiculum), which receive few connections from the neural

path integrator (MEC), as opposed to proximal CA1 [41]. These

recorded place cells were probably mainly driven by sensory

information (subiculum, LEC) instead of path integration infor-

mation (MEC) [41,42], which is why we assumed ap, the

parameter accounting for path integration accuracy, to be

negligible for these specific datasets.

Since the simplifying assumptions made by the model presented

here are too strong for real-world environments, and since place

cell firing is influenced by many more factors other than

environmental geometry, such a simple model cannot yield highly

accurate predictions of electrophysiological recordings. However,

if place cells integrate information in a Bayesian fashion, and if the

sizes of their place fields are correlated with uncertainty, then even

this simple model should be able to approximately account for the

distribution of place field sizes and their dependence on the

distances to boundaries and landmarks in the environment. For

example, place fields should be smaller close to boundaries and

larger far from boundaries. In the Results section, we will compare

these predictions of the Bayesian model to data recorded from rat

place cells in different environments.

Equation (7) can be extended to only include subsets of observed

objects (see Discussion) by introducing a set of binary variables

ui[ 0,1f g indicating whether a certain object observation is being

used in the uncertainty estimation. If ui~0, then the probability of

observation i does not influence the posterior probability. Thus, in

the one-dimensional case, the observation probabilities will be

p(oi Dx)~f 1 if ui~0

N (mo,i,so,i) if ui~1
ð8Þ

Figure 1. Place field sizes, and predicted uncertainty, on an empty rectangular track. The blue dots show the sizes of individual place
fields in bins (one bin equals 1.9 cm). The red lines show the location uncertainty predicted by the Bayesian model - the thin red line (bottom)
represents a trajectory very close to either the top or the bottom border (which means a small uncertainty in the y dimension), and the thick red line
(top) shows a trajectory in the middle of the track, far from the borders (which means a large uncertainty in the y dimension). They account for 85% of
the place fields between them and thus explain most of the variance. (Data from [68]).
doi:10.1371/journal.pone.0089762.g001
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If we insert equation (8) into equation (4) calculating the mean

and uncertainty (standard deviation) of the ‘best guess’ location,

and solve for the standard deviation (see [40]), we get the following

extended expression representing the uncertainty depending on

the distances of a subset of the observations:

ŝsx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(apzao

XN

i~1

ui

d2
i

)
{1

vuut ð9Þ

Figure 2. Place field sizes, and predicted uncertainty, on a circular track with objects. The blue lines show the smoothed place field sizes
(10-point moving average), normalized to a mean of 0 and variance of 1, and the red lines show the location uncertainty predicted by the Bayesian
model. The minima of the red lines correspond to the black squares marking the positions of the objects on the track, since the location uncertainty is
lowest near to an object and highest when the rat is far from the objects. Pearson’s correlation coefficient between the recorded place field sizes and
the predicted uncertainty was r~0:56 for rat 1 and r~0:55 for rat 2. The proportions of explained variance were R2~0:22 for rat 1 and R2~0:20 for
rat 2. (Data from [42]).
doi:10.1371/journal.pone.0089762.g002
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where i~1, � � � ,N indexes one of N objects, boundaries, or

obstacles. ui can be fitted using e.g. a non-linear optimizer or a

brute-force approach - trying all possibilities - if the number of

obstacles is small enough (in the Results section, we have adopted

the latter approach).

Bayesian inference on the neuronal level: a possible
model

The hypotheses outlined in the Introduction section imply that,

physiologically, the firing fields of place cells should shift and

shrink in a statistically optimal fashion. This might be caused by a

large number of possible mechanisms (see e.g. [43] for some

2
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Figure 3. Predicted and recorded place fields in environment B. The squares represent firing rates at each point of the big square
environment, with hot colors marking high firing rates, and cold colors low firing rates (the plots have been scaled to fit the page - see main text for
the actual proportions of the environments). The model prediction was made based on parameters estimated from the other environments
(environments A, C and D). The overall mean proportion of explained variance was R ~0:60 (Data from [69]).
doi:10.1371/journal.pone.0089762.g003
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proposed implementations of Bayesian inference in brains, and the

Discussion section). We have chosen to implement a different

solution for Bayesian inference in spiking neuronal networks,

based on coincidence detection. We report simulation results of

this neuronal Bayesian inference model in the last subsection of

Results. This neuronal model rests on the following assumptions:

Inference using coincidence detection. A mechanism for

obtaining a Bayesian posterior requires a multiplication of

probability distributions. In a network of spiking neurons, such

multiplication might be implemented by coincidence detection

[44], a mechanism that hippocampal CA1 neurons have been

observed to exhibit [45–47]. This particular implementation of

multiplication is a hypothesis that our proposed conclusion does

not depend on, since multiplication could also be implemented

neuronally in several other ways (e.g. [48]). However, we chose

this one for its simplicity and computational efficiency. Further-

more, a number of neuronal network models capable of

performing Bayesian inference have been proposed before

[43,49–52]; nevertheless, none of these methods are fully

compatible with the anatomical properties of the HEC and the

physiological evidence from place cells (see Discussion). For this

reason we chose to implement a novel solution for Bayesian

inference in spiking neuronal networks, based on coincidence

detection, and inspired by sampling-based approaches to represent

probability distributions [53–55].

The temporal resolution of coincidence detection is in the

right range to approximate multiplication. Bayesian infer-

ence requires multiplication. Multiplication by coincidence detec-

tion only works well within a certain range of temporal resolution

of the coincidence detection. If the temporal resolution is too high,

very few inputs, or even one input, can elicit output spikes, in effect

leading to an addition of the inputs instead of a multiplication.

Too low a temporal resolution on the other hand could lead to

very sparse output spikes, leading to a displacement of the output

firing field and destroying the statistical near-optimality (or, in the

extreme case, to zero output spikes). The coincidence detection

properties of noisy integrate-and-fire neurons have been analysed

in two studies [56,57] (although their analyses are based on a

simple spiking neuron model, recordings by [56] indicate that

these expressions closely model the coincidence detection behav-

iour of biological neurons in vitro). According to [57], the

temporal resolution can be approximated based on the standard

deviation of the fluctuation of the membrane potential s, the

membrane time constant tm and the amplitude w of the

postsynaptic potentials (PSPs) as follows:

T&1:35
s

w
tm ð10Þ

Inserting standard values observed in vivo in area CA1 of the

Hippocampus into equation (10) (tm&18ms [58,59], s&6mV
[60], and w just under the 24+9mV necessary to discharge a

place cell [61]) yields around T&7+3ms. The temporal

resolution of the coincidence detection in hippocampal CA1

neurons has also been measured in vitro, and is of the same order

of magnitude. For example, Jarsky et al. have found that CA1

neuron firing upon perforant path input spikes is strongly

facilitated by synchronous spikes from Schaffer-collateral (SC)

synapses arriving within 5–10 ms, but is otherwise unreliable if no

synchronous SC input is present [45].

This temporal resolution constant T is small enough to

approximate multiplication (see Results), but sufficiently large to

allow enough coincidences to form a place field. Even with very

sparse information, e.g. in rat experiments under total darkness

[62,63] in which the place fields presumably arise mostly from grid

cell input, place cells might receive up to 200–20,000 incoming

spikes per second (based on around 100–1,000 connections

between grid cells and a place cell [4,64,65], and a grid cell firing

rate around 2–20 Hz [16,66]). Given the temporal resolution of

T&7+3ms, this spike rate is sufficient to elicit the empirically

observed CA1 place cell firing rates of around 1–10 Hz (e.g.

[42,67]) in locations where many grid cells firing fields overlap.
Approximating a Bayes-optimal location estimate. Place

cells should approximate a Bayesian posterior according to

hypothesis 2, as expressed in equations (1) and (2). Neuronally,

each border cell could represent a boundary proximity probability

distribution p(oi Dx), if we assume that firing rate distributions are

correlated with probability distributions (cf. hypothesis 1). The

MEC grid cell path integrator could provide the prior location

distribution p(x). Although a single grid cell cannot provide an

unambiguous estimate, having many firing fields, an ensemble of

multiple thresholded grid cell inputs yields a single firing field (or

few firing fields) in small environments, as pointed out by grid cell-

driven place field models [3,4]. This reduction to one or few firing

fields works both with additive inputs, as in most rate-coded neural

network models, and with multiplications of inputs.

Integrate-and-fire spiking neurons are able to approximate the

multiplication of their inputs by making use of coincidence

detection (see Figure 4). Thus, such neurons can represent a

posterior (i.e. a product of probability distributions). If we

represent the spike train of each neuron using a function S(t),
which at a given time t is S(t)~1 if the neuron has fired a spike

within the time interval ½t,tzt), and 0 otherwise (t being the time

discretization parameter of the model, which we set to the

temporal resolution of coincidence detection in place cells - see

Text S2 in the Supporting Information), then the spike train of the

place cell computing the posterior, Spc can be expressed using the

spike trains of its M input neurons, Si:

Spc(t)~H( 1

M

XM
i~1

(Si(t){a)) ð11Þ

Where H(:) is the Heaviside step function, and a~ 0,1ð � is the

proportion of input neurons required to spike within t time in

order to elicit an output spike in the place cell. See Text S2 in the

Supporting Information for the derivation, and for arguments why

this expression approximates multiplication. Using equation (11),

we can express the probability PxA ,xB
that the rat is on a path

between the locations xA and xB during K time intervals of

duration t (represented by TA,B), using the spike train of a place

cell presumably representing the outcome of the Bayesian

inference process Spc, the spike trains representing of N grid cells

Sgc,1:::Sgc,N , and the spike trains of M border cells Sbc,1:::Sbc,M :

PxA,xB
!

1

K

X
t[TA,B

Spc(t) ð12Þ

Spc~H( 1

N

XN

i~1

(Sgc,i(t){a)z
1

M

XM
i~1

(Sbc,i(t){a)) ð13Þ

Equations (12) and (13) describe how Bayesian inference can be

implemented in a spiking neuronal network, approximating the
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Results

Place field sizes on a linear track
Figure 1 shows this prediction of the Bayesian model in a

rectangular environment, and compares it to single-unit record-

ings of the place cells in area CA1 of the hippocampus of ten male

Lister Hooded rats (data from [68]). The rats ran on a narrow

rectangular track with food cups at both ends. These sizes were

also used to generate the model predictions. In the following, x

denotes the distance of the rat from the eastern boundary, y the

Bayesian Cue Integration in Place Cells
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Figure 4. Neuronal implementation of Bayesian inference based on coincidence detection. This simple integrate-and-fire model contains
only three spiking neurons, and shows their spikes over 5 simulated seconds. Each plot shows the spikes (blue dots in bottom rows), as well as the
corresponding instantaneous firing rate or spike density. First row: a simulated grid cell (pre-defined firing rate function), used as the prior. Second
row: simulated border cell (pre-defined firing rate function), used as the observation likelihood. Third row: simulated place cell, representing the
posterior, firing only when all incoming inputs are coincident (i.e. they occur within a small time window). The Gaussian drawn over the mean and
standard deviation of the noise-filtered spikes represents the place field, and approximates the Bayesian optimum. Bottom row: plot of the
membrane potential of the place cell.
doi:10.1371/journal.pone.0089762.g004

posterior probability distributions with spikes of the place cell

which are viewed as samples of that distribution (see Text S2 in the

Supporting Information for the derivation, and for a formulation

of coincidence detection as rejection sampling; and see Figure 4 for

simulation results using integrate-and-fire spiking neurons).

ss~ŝsxŝsy, which are assumed to be independent on

this track (see Methods).

distance from the southern boundary, and L and W the constant

length and width of the environment (L~254cm,W~10cm [68]).

The model was instantiated with the four boundaries of the

environment, and the uncertainty at each point of the track

calculated by multiplying the separately calculated x and y

uncertainties ^

ŝs(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a{2

o ( 1

x2
z

1

(L{x)2 )
{1

( 1

y2
z

1

(W{y)2 )
{1

s
ð14Þ

The y-axis of Figure 1 shows the total place field area of the

recorded place cells, in bins of 1.9 cm. Under the hypothesis that

uncertainty is correlated with place field size (H2), equation (14)

implies that the biggest place fields should be in the center of the

o in equation (14) was adjusted using a coordinate descent

algorithm. Using this single parameter, the model can explain why

place fields were bigger when closer to the center of the track.

Most of the recorded place field sizes (85%) fall between the

boundaries of the model.

Place field sizes on a circular track with objects
Figure 2 shows the results of the model in a more complex

environment, comparing the sizes of place fields of recorded place

cells of two male Fischer-344 rats in an experiment performed by

Burke et al. [42], in which the rats were running on a circular track

with 106.7 cm diameter and 15 cm width. The track contained a

barrier with food trays on each side to motivate the rats to run

along the track, alternating between clockwise and counter-

clockwise laps. It also contained 8 randomly distributed objects,

and was otherwise featureless. The Bayesian model, equation (7),

was fitted to the recorded data, using N~9 observations (the 8

objects, and the barrier). Uncertainty was calculated in one spatial

dimension, which corresponds to the distance of the rat from the

barrier along the track.

The single-parameter model achieved correlations of rf 1~0:56

for rat 1 and rf 2~0:55 for rat 2 between the smoothed place field

sizes and the fitted model - see Figure 2 (the probabilities of getting

correlations as large as these values by random chance are

negligible: pr1~3 � 10{16 for rat 1 and pr2~2 � 10{17 for rat 2).

The average place field sizes clearly have a non-random structure,

with the minima corresponding to the locations of the 8 objects

and the barrier, as predicted by the Bayesian model (the null

hypothesis of the data being random can be rejected with high

confidence, with p1~0:001,p2~0:008 for the two rats according

to a chi-square goodness-of-fit test of the place field size data

against a normal distribution).

On the other hand, it is plausible that the residual errors, i.e. the

model subtracted from the average place field sizes, are randomly

drawn from a normal distribution, implying that the model

explains a significant part of the non-random structure (the null

hypothesis of the errors being random cannot be rejected

track. Since both the distance from the east boundary and from

the north boundary influence the uncertainty, it also implies that

at each position along the length of the track, there should be

multiple uncertainties, depending on whether the rat is close or far

from the side borders (the south/north border), which is shown by

the two red lines in Figure 1 (the thin red line corresponds to the

rat running close to the south/north border, and the thick red line

to it running in the center, far from those borders). The parameter

a

MEC Grid cell

MEC/Subiculum
Border cell

Hippocampal
Place cell
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Neuronfri
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according to a chi—square goodness—of—fit test of the residual errors
against a normal distribution, with p1=O.l75,p2=O.ll9 for the
two rats). Some recorded place cells had multiple place fields [42],
in which case the predicted uncertainty was calculated for each
place field separately.

In Figure 2, the x—axis shows the positions of the means
(centroid) of the recorded spikes of each place field, and the y—axis
shows the size of the fields, derived by calculating the standard
deviations of the spike positions. This makes these place field sizes
directly comparable to the uncertainties calculated by equation (7),
provided that the place fields resemble Gaussians, being approx-
imately symmetric, and having the highest spike density around
the mean (centroid). If this was not the case — if the recorded place
fields were not approximately Gaussian -, the spike densities would
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Figure 5. Density of place cell spikes, and predicted uncertainty, on a circular track with objects. The blue lines show the smoothed
(averaged) density of place field spikes, i.e. the number of spikes across all recorded place cells for each centimetre of the track, normalized to a mean
of 0 and variance of 1. The red lines have been obtained by summing Gaussian distributions, one for each place cell, with the means set to the center
of each place field, and the standard deviations set to the location uncertainties (hypothesized to be correlated with place field sizes, see H2) as
above. The exact amplitude of the spike density at each location depends on the place cells firing rate, which is influenced by many non-spatial
factors such as running speed [67], but the shape of the curves is comparable. Pearson’s correlation coefficient between the recorded place field sizes
and the predicted uncertainty was r~0:74 for rat 1 and r~0:86 for rat 2. The proportions of explained variance were R ~0:70

for rat 2. (Data from [42]). doi:10.1371/journal.pone.0089762.g005
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deviate from the prediction of the model. Figure 5 compares the
spike densities of all recorded spikes to the densities predicted by
the model, achieving correlations of V31 =0.74 for rat l and
rs; =O.86 for rat 2 (the probabilities of getting correlations as large
as these values by random chance are negligible: prl :7 >l< l0’37
for rat 1 and Pr2 =1 * 10*“) for rat 2).

Place field sizes after changes in the environment size
Changes in the environment have been shown to influence

place fields. In order to show that the Bayesian model does not
violate the observed effects, and can predict place field size in
novel environments, we have applied it to the data presented in [7]
for evaluating the BVC model, and originally reported in [69].
The data was recorded from six rats foraging for food in four



Figure 6. Place field sizes, and predicted uncertainty, on a circular track with objects, using the extended model. The blue lines show
the smoothed place field sizes (10-point moving average), normalized to a mean of 0 and variance of 1, and the red lines show the location
uncertainty predicted by the extended Bayesian model (which takes into account only a subset of the objects on the track at each point). Pearson’s
correlation coefficient between the recorded place field sizes and the predicted uncertainty was r~0:82 both for rat 1 and rat 2. The proportions of
explained variance were R2~0:66 for rat 1 and R2~0:60 for rat 2. (Data from [42]).
doi:10.1371/journal.pone.0089762.g006
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different environments: a small square of size 61 ><61 cm
(environment A), a large square of l22><l22 cm (environment
B), and a horizontal and vertical rectangle of 61 ><l22 cm and
122 ><6l cm (environments C and D). l2 of the 28 recorded place
fields were discarded from the dataset because they were
asymmetric and did not fit a Gaussian distribution (see Discussion
for possible model extensions). For the remaining 16 place fields,
the parameters of the model were adjusted using the data from two

of the four environments, C and D. The means and standard
deviations of the Gaussians used to represent the place field in the
x and y dimensions were obtained by using a least squares fitting
procedure, and the parameter ao calculated from the known
distances and standard deviations using equation This
equation also allowed calculating the predicted place field size,
i.e. the standard deviation of the representing Gaussian, in the
remaining two environments, by using appropriately sealed
distance relations.



Then, the predicted and recorded place fields were compared at

each point in the environment (see Figure 3). Figure 3 shows the

results for environment B (the large square environments),

achieving a mean proportion of explained variance of

R2
mean~0:60. This fit of the model predictions was compared

against the optimal fit possibly achievable by Gaussian functions,

calculated by fitting Gaussians to each actual firing field in the B

environments using a least square errors procedure. This optimal

fitting procedure yielded R2
optimal~0:68 on average, which is not

statistically different from the model fit (p~0:29 on a paired t-test

over all individual place field R2 values). This shows that the

Bayesian model can make predictions which fit the data almost as

well as optimally fitted Gaussian functions. The difference between

the fit of the model and of this optimal fit is statistically

insignificant.

Place field sizes from subsets of observed objects
The model used so far makes a number of simplifying

assumptions, which yield a very simple mathematical form with

up to two parameters - see equation (7) - and already provides

reasonable predictions of experimental data (see above). However,

the accuracy of the model can be improved by relaxing some of

these assumptions, at the expense of simplicity (see the Discussion

section).

One way to improve the model accuracy is to allow place cells

to be driven not by every single boundary and obstacle in the

immediate environment, but only by a subset of these objects.

Equation (9) allows the calculation of uncertainties taking into

account a subset of observations (see Methods). This extension

introduces N additional model parameters for the N binary

variables ui specifying whether or not observation i is being taken

into account.

Fitting this extended model to the data recorded on the circular

track with objects, significantly increases the model fit - instead of

explained proportions of variance R2~0:22 for rat 1 and

R2~0:20 for rat 2, the extended model achieves R2~0:66 for

rat 1 and R2~0:60 for rat 2 (see Figure 6). However, this extended

model uses N~9 more parameters than the original model (8

objects on the track, plus the barrier with the adjacent food trays).

To take into account the number of parameters relative to the

number of data points, we also compare the adjusted R2 values

(which we denote by R
2
). Instead of R

2
~0:21 for rat 1 and

R
2
~0:19 for rat 2, the extended model yields R

2
~0:62 for rat 1

and R
2
~0:56 for rat 2 after adjustment by the number of

parameters.

Further possible extensions of the model, such as allowing

skewed place fields, will be described in the Discussion section.

Bayesian inference on the neuronal level: a possible
model

As argued above, the sizes of place fields should be dependent

on incoming sensory information, in order to approximate the

statistically optimal location of the animal, and the uncertainty

associated with it. Mathematically, this means calculating a

Bayesian posterior (see Methods). We have already presented

some evidence that place cells might be able to approximate such

Bayesian calculations in the previous sections. Here we extend this

idea by suggesting a tentative model of how these calculations

might be implemented on the neuronal level.

A spiking neuronal network could implement the multiplication

operation required for calculating a Bayesian posterior by making

use of coincidence detection. Figure 4 shows a simple example of a

place cell receiving input from only one grid cell (path integration)

and one border cell (observation). The place cell is modeled using

a current-based integrate-and-fire neuron model [70] (membrane

time constant tm~17ms, synaptic time constant ts~5ms, resting

potential Vr~{80mV , spike threshold Vt~{55mV , synaptic

weights w~26mV ). Synaptic inputs are modeled as spike trains

drawn from non-homogeneous Poisson processes, with firing rates

Figure 7. Errors of coincidence-based multiplication based on a simple integrate-and-fire model. The altitude shows the error (lowest
point: 1%, highest point: 16%, error at CA1 place cell parameters: 5%), and the x and y axes show the dependence of the error on the membrane time
constant t and the spike threshold V respectively. Interestingly, the parameters of some CA1 place cells (t~17ms, V~{54mV ) fall into one of the
local minima of error; and no hippocampal place cell reaches the area of maximum error.
doi:10.1371/journal.pone.0089762.g007
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controlled by Gaussian distributions (see dashed lines in the figure)

to approximate the symmetric firing fields of grid cells and some

border cells. The Brian simulator was used to simulate the place

cell and to plot Figure 4 [71].

In the figure, the place cell only fires when both the grid cell and

the border cell inputs arrive within a small time window. This

leads to a shifting of the place field - the place cell combines both

types of information, and forms the place field at a location

specified by the weighted average of the grid field and border field

location, the weighting depending on the uncertainties (field sizes)

of the inputs. Thus, the place field is located between the grid and

the border field, but closer to the border field because it is

narrower (more accurate).

Figure 4 is intended to illustrate the concept of inference by

coincidence detection. The model relies on the fact that if the

threshold of the output neuron is set high enough to only allow

output spikes on synchronous input spikes, then the output neuron

performs approximate multiplication, as required by Bayesian

inference. The approximation error mainly depends on two

parameters of the output neuron: its membrane time constant, and

its spike threshold voltage. For our purposes, we define the

approximation error as the absolute difference between the

posterior mean estimated by the model, and the mean of the

exact posterior according to Bayes’ rule (the error of the posterior

mean is most relevant for a location model, since the statistically

optimal location estimate is located at the mean of the posterior

distribution under Gaussian assumptions). Figure 7 shows how this

approximation error depends on these two parameters. For an

analytical discussion of the coincidence detection properties of

integrate-and-fire neurons, see [56,57].

Discussion

We have attempted to highlight the usefulness of Bayesian

models in explaining information combination in place cells.

Although such models are too simple to explain all firing

properties, their predictions fit the data quite well given their

simplicity (low numbers of parameters), which is an important

property of good models [72–74]. We have compared such model

predictions to three different datasets recorded from rat place cells

in different environments in the Results section, using firing field

size as a measure of uncertainty. Our results suggest that the

‘Bayesian brain’ hypothesis might be useful in trying to understand

information processing in Hippocampal place cells, not just at a

computational level as has been suggested many times before [8–

11], but also at the neuronal level.

Bayesian spatial cue integration has been investigated before on

the behavioural level. Nardini et al. [75] investigated cue

integration in human children and adults, using a paradigm in

which subjects had to return an object to its original place, either

given only landmark information, only self-motion information, or

both. Their results suggest that adults are able to reduce the

variance (uncertainty) in their response by integrating different

spatial cues in a statistically near-optimal fashion. Cheng et al. [11]

reviewed animal experiments, arguing that the integration of

different spatial cues might be partially explained by Bayes’ rule -

for example, pigeons seem to assign weights to information from

different landmarks using Bayesian principles. Therefore, in

contrast to previous work, this paper significantly extends these

ideas by directly comparing the predictions of Bayesian spatial cue

integration to physiological data recorded from rat place cells, and

argues for the plausibility of this cue integration mechanism on the

neuronal level.

The claim that perception (spatial or otherwise) is based on

Bayesian inference, implemented physically as a neuronal

mechanism, has been criticized for multiple reasons [15]: the lack

of strong physiological evidence in favour of the Bayesian

hypothesis (most existing evidence to date is behavioural, coming

from ‘Bayesian psychophysics’ [15,76]), the arbitrary choice of

prior functions in favour of simplicity in many of these models

(instead of the choice being based on empirical data), and the

ability to explain Bayes-optimal perception in cue integration in

some paradigms without a Bayesian mechanism, by implementing

reinforcement learning.

In this paper we have argued that firing field properties of single

place cells resemble the outcomes of Bayesian inference processes.

Following the advice of [77] we have generated quantitative

experimentally testable predictions, and compared them with

empirical results. Thus, in contrast with the view that ‘Bayesian

models do not provide mechanistic explanations currently, instead they are

predictive instruments’ [15], we provide one of a few existing pieces of

empirical evidence in favour of the idea that the brain might

represent uncertainty at a neuronal level, and that there are some

neuronal level mechanisms approximately conforming to Bayesian

principles. Our results therefore contribute to the ‘current challenge

for these [Bayesian] models [is] to yield good, clear, and testable predictions

at the neural level, a goal that has yet to be satisfactorily reached’ [15].

Bayesian localization
Bayesian cue integration might also play a role in the more

complex problem of maintaining a near-optimal location estimate

through time, despite noise and accumulating errors. In robotics,

one popular family of solutions for maintaining statistically optimal

location estimates is called Bayesian localization (an example

algorithm from this family would be the Kalman filter) [38]. Given

some simplifying assumptions, Bayesian localization can be

performed by the following three computations at each time step,

in order to maintain a statistically optimal, error corrected location

estimate:

1. Path integration. Updates the prior location belief with

(possibly erroneous) movement vectors using a motion model at

each time step.

2. Correction. A Bayesian inference mechanism that corrects

the location belief using observations.

3. Update. Finally, the path integrator’s estimate is updated to

the corrected estimate.

There is ample evidence in literature that the HEC is able to

perform step 1 [17] - grid cells update their firing with each

movement. We have presented evidence in the Results section for

step 2, strongly suggesting that place cells might be able to perform

approximate Bayesian computation. With respect to step 3, there

is anatomical evidence that such an update could happen - place

cells can project back to grid cells and influence their firing [78–

80]. Such back-projections might serve the role of providing

environmental stability for the grids [81], and prevent the

accumulation of error during path integration [3,18,82]. They

are also postulated in a model of grid-cell based error correction,

which shows how the redundant modular coding in the entorhinal

cortex might constitute an exponentially strong population code -

it can ‘produce exponentially small error at asymptotically finite information

rates’ [83] (however, this model does not account for location

correction using observations). The idea of back-projections from

grid cells to place cells is supported by recording evidence showing

that grid cell representations become erroneous, less gridlike, and

expand in field size in novel environments [66]; and recent
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evidence indicating that deactivating the hippocampus extinguish-

es grid fields [84].

Thus, the Hippocampal-Entorhinal Complex might be able to

implement Bayesian localization and maintain approximately

statistically optimal location estimates through time, despite

accumulating errors. Entorhinal grid cells are able to integrate

movement signals [17]. Bayesian cue integration in place cells (see

Results section) might be the mechanism performing the

correction step and then, after near-optimal cue integration, the

corrected location estimate would update grid cells (the neuronal

path integrator) through the place cell back-projections.

Phase resetting presents a plausible mechanism by which to

perform this update step. It has previously been suggested that

error correction in oscillatory interference models of grid cells

might be implemented through phase reset, the resetting of the

phase of intrinsic oscillations in MEC grid cells [81,85,86].

Therefore, when entering a new environment, connections might

form between place cells and grid cells firing simultaneously (i.e.

between cells with coinciding firing fields), to anchor the grid field

representation to environmental features such as boundaries.

These connections could induce a reset of the intrinsic oscillation

phase of the grid cell when the grid field shifts (e.g. due to path

integration errors) [85]. The changed oscillation phase would lead

to a displacement of the grid field back to the center of the place

field, because grid cell firing fields arise from the oscillatory

interference patterns between background theta oscillations and

the intrinsic oscillations in the grid cell in oscillatory interference

models, with the grid cell firing rate being highest when the phases

coincide [87].

There is some recording evidence showing that single incoming

spikes can indeed reset intrinsic oscillation phases in cells of the

entorhinal cortex [88–90]. Because a single postsynaptic potential

suffices, the probability of phase reset occurring depends on the

firing rate(s) of the place cell(s) connected through the back-

projections. Thus, as the animal is running through the place field,

the firing rate within the grid field might gradually adapt to the

firing rate of the place field, and the fields would become aligned,

completing the update step.

Possible extensions
There are some properties of place fields which the model

presented here, in its simplest form, while not inconsistent with,

cannot account for. The basic uncertainty estimation, equation (7),

does not account for place cells driven by only a subset of the

objects in the environment, instead of all of them, however, some

place fields have been observed to be controlled by specific

landmarks [91]. Equation (9) makes it possible to parametrize

which subset of the object distances are taken into account for the

uncertainty calculation, yielding a significantly better model-data

fit on the track with multiple objects (see Results).

Although the equations used in the Results section use a single

Gaussian distribution to model a place field, this model can be

used to model place cells with multiple place fields in a

straightforward fashion, by calculating a separate uncertainty

value for each place field using the respective distances of objects

from the place field centroids. Thus, multiple uncertainty values

can be associated with each place cell, one for each place field - as

in Figure 2 for example, in which many of the plotted place fields

belong to multi-field place cells (see [42] for the distribution of

single-field and multi-field place cells in this dataset).

Further phenomena not explained by the simple model include

asymmetric place fields that are frequently found in area CA1 of

the hippocampus, and the observation that place field sizes seem to

increase along the dorso-ventral axis of the hippocampus [67].

Asymmetric place fields could potentially be modelled using

skewed probability distributions such as the Skew-Normal

Distribution [92] as observation likelihoods instead of Gaussians,

using a similar approach to the one described in the Methods

section. The grid cell input to a place cell is usually symmetric, but

the firing fields of border-related cells can be skewed [22,23],

which might give rise to asymmetric place fields. The skewness

parameter of an asymmetric probability distribution (such as the

Skew-Normal Distribution) in such an extended model might

increase as a function of familiarity with the environment (time

spent in the same environment), in order to model the experience-

dependent asymmetry of some CA1 place fields [93]. The mean

and variance of such a distribution could be estimated similarly to

the approach proposed in the Methods section. Future work, and

experimental data from place cells recorded over extended periods

of time, will be needed to verify how well such an asymmetric

model could account for skewed place fields.

It is interesting to note, with respect to the fact that the place

field sizes increase along the dorso-ventral hippocampal axis, that

the same field size increase has been observed in grid cells in the

medial entorhinal cortex [94]. Since grid cells are hypothesized to

play a role in driving place cell firing, both in our model and in

previous models [3,4], this might account for the place field size

gradient. In an extended model taking into account the spatial

configuration of the hippocampal-entorhinal complex, if the dorsal

grid cells are adjusted to have small firing fields and the ventral

ones large firing fields (50 cm–3 m, see [94]), this will lead to a

similar gradient in the resultant place fields, given that the grid

cells at least partially drive the firing of the place cells. The role

played by boundary-related inputs would mean that not every

place field would fit this dorso-ventral size gradient, but on average

a field size gradient could be observed in such a model.

Related work
The Boundary Vector Cell model [24] of place cell firing also

explains place fields in terms of geometric relations to environment

features, although it does not suggest statistical near-optimality and

does not make use of Bayesian cue integration. The objective fit of

the simple model presented in this paper is not as good as the fit

achieved by the Boundary Vector Cell model ([7] describes the fit

of the BVC model to the data in figure 3). The BVC model could,

in principle, also be fitted to the first two datasets presented in the

Results section, but would require the adjustment of a higher

number of parameters than there are data points and thus would

not have a unique solution (Hartley et al. [7] simulated 2–4 inputs

per place cell, requiring up to 7 parameters to be adjusted for each

place cell; and a few additional global parameters - over 700 fitting

parameters for the data in Figure 2).

The model presented here serves a different purpose; not to

present a more accurate model of place fields, but rather to

highlight that the information integration in place cells approx-

imately resembles simple Bayesian computation. Our results

suggest that predictions resembling in-vivo recorded place field

data can be made based on a single underlying principle: the statistically

optimal combination of information. Because of its simplicity, this model

cannot fully explain experimental data, and does not achieve a fit

as good as previously suggested models such as the Boundary

Vector Cell model [2,7,24] (since it only uses a single global

parameter for the results illustrated in Figures 1, 2 and 3). It has

been argued that in addition to quantitative fit, simplicity and

parsimony are also important and desirable characteristics for

potentially valid computational models [72–74]. Thus, we believe

it is important to consider not only models that are capable of

fitting data very well, but also models that offer simple
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explanations, and we have described such a model, using a

Bayesian framework and a single parameter.

It has been suggested earlier [29] that sensory information

might be used to correct path integration error. Previous work

building on this idea can be categorized into high-level models,

suggesting correction mechanisms but unconcerned with the

details of neuronal implementation, and neuronal-level models.

High-level models of hippocampal error correction have

proposed a Bayesian information integration mechanism before

[11–14]. Cheung et al. [14] show that featureless boundaries alone

are insufficient for unambiguous localization, and propose a

similar model of Bayesian localization to the one outlined here,

based on the implementation of a particle filter, and replicate some

experimental results on place and grid field stability using their

high-level model. However, they do not account for single cell

firing field data, and they do not suggest how the particle filter

might be implemented in the brain. MacNeilage et al. [13] suggest

Bayesian cue integration to estimate spatial orientation under

uncertainty, suggesting Kalman filters (which use unimodal

Gaussian probability distributions) or, alternatively, particle filters

(which are capable of dealing with multimodal and non-Gaussian

probability distributions) as the mechanistic implementation. Pfuhl

et al. [12] also hypothesize spatial information integration to be

Bayesian, choosing Kalman filters as their implementation.

Finally, Cheng et al. [11] propose that spatial information is

integrated in a Bayesian fashion, without suggesting a formal

model or a neuronal implementation, and provide some behav-

ioural evidence for this claim.

Kalman filters are possible to implement on biologically

plausible attractor networks [51], although they have the

disadvantage of being unable to deal with multimodal, non-

Gaussian distributions. Taking a different approach, Samu et al.

[82] have used a recurrently interconnected attractor network to

correct path integration errors, using sensory information via

hippocampal back-projections. Their model, like most attractor-

based path integration models, relies on recurrent interconnections

(which area CA1 of the hippocampus seems to lack [3]). Extending

their ideas, Fox and Prescott [95] have attempted to map the

hippocampal formation onto a temporal restricted Boltzmann

machine (and argue that inference in their model resembles

particle filtering), also modelling on a functional level but trying to

adhere more closely to anatomical connectivity. However, like the

previously mentioned concrete computational models, they do not

model empirical data to substantiate their model. Using oscillatory

interference theory instead of an attractor model as their

theoretical basis, Monaco et al. [96] also use cue-driven feedback

to correct location errors and to handle cue conflicts. They also

reproduce partial remapping in an experiment, strengthening the

mechanism the model uses to resolve cue conflicts. Cue-driven

location correction is also employed in the model proposed by

Sheynikhovich et al. [97], in the form of connections between view

cells and grid cells, weighted using Hebbian learning.

Unlike many of these models, apart from presenting a high-level

model of Bayesian cue integration, we have also attempted to

suggest a tentative neuronal mechanism that might underly the

implementation of approximate inference. Starting from mathe-

matical theory, a number of implementations of Bayesian

inference have already been proposed (e.g. [43,49–52]), although

none known to the authors in the context of HEC error correction.

We believe the inference mechanism described in the Results

section offers a useful contribution, because most previously

published spiking neuron inference mechanisms predict anatom-

ical and firing properties inconsistent with some empirical

observations if applied to place cells. For example, the distribution

population coding method [98] assumes prespecific tuning

functions and a sophisticated decoding operation with unclear

neuronal implementation. Inference mechanisms based on a log

probability population code [52] have more plausible decoding

schemes, but require recurrent connectivity and global recurrent

inhibition, which have only been observed in CA3, not in CA1

place cells [99], in contrast to physiological data from CA1

suggestive of Bayesian inference (see Results section). In addition,

they assume specific weight matrices for statistical optimality -

which could be learned in principle, but would require a non-

Hebbian learning rule. Finally, probabilistic population codes

(PPC) have been widely used in modelling inference [50], recently

also supported by physiological data [100]. However, PPCs have

no clear way to implement learning [101], and they also require

recurrent connections [50]. Furthermore, the standard PPC

inference scheme assumes Poisson-like variability to allow simple

addition to implement inference [43,50], which implies a direct

relationship between the absolute firing rates of neurons in a PPC

and the uncertainty (standard deviation) of the encoded distribu-

tion - a relationship predicted by most inference schemes.

However, it has been observed that place cell firing rates increase

with the animals movement speed [67] - if place cells used a PPC

with Poisson variability, or any other probabilistic encoding

scheme predicting such a relationship, this would imply that the

faster they would run, the more certain they would become of their

location (location uncertainty would decrease with increasing

running speed), which is counter-intuitive and contradicts the

frequently observed trade-off between speed and accuracy [102].

The model we propose has its own shortcomings, but is simple

and does not depend on specific weight matrices or variability

distributions. Our aim was to show that even without additional

assumptions regarding connectivity, weights, or learning, the

anatomy of the Hippocampal-Entorhinal Complex might be able

to implement approximate Bayesian inference. Although we were

unable to substantiate this tentative model with physiological data

as of yet, we hope that the reported results will encourage future

research addressing the often sceptically regarded [6] mechanistic

‘Bayesian brain’.
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